Smoothed analysis of condition numbers and complexity implications for linear programming
نویسندگان
چکیده
We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n-by-d matrix Ā, n-vector b̄, and d-vector c̄ satisfying ∥∥Ā, b̄, c̄∥∥ F ≤ 1 and every σ ≤ 1, E A,b,c [logC(A, b, c)] = O(log(nd/σ)), where A, b and c are Gaussian perturbations of Ā, b̄ and c̄ of variance σ and C(A, b, c) is the condition number of the linear program defined by (A, b, c). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O(n log(nd/σ)).
منابع مشابه
Uniform Smoothed Analysis of a Condition Number for Linear Programming
Bürgisser, Cucker, and Lotz [arxiv:math.NA/0610270] proved a general theorem providing smoothed analysis estimates for conic condition numbers of problems of numerical analysis. Applications to linear and polynomial equation solving were given. We show that a suitable modification of the general theorem in that paper, adapted to a spherical convex setting, allows to analyze condition numbers of...
متن کاملSmoothed analysis of termination of linear programming algorithms
We perform a smoothed analysis of a termination phase for linear programming algorithms. By combining this analysis with the smoothed analysis of Renegar’s condition number by Dunagan, Spielman and Teng (http://arxiv.org/abs/cs.DS/0302011) we show that the smoothed complexity of interior-point algorithms for linear programming isO(m3 log(m/σ)). In contrast, the best known bound on the worst-cas...
متن کاملSmoothed analysis of complex conic condition numbers
Smoothed analysis of complexity bounds and condition numbers has been done, so far, on a case by case basis. In this paper we consider a reasonably large class of condition numbers for problems over the complex numbers and we obtain smoothed analysis estimates for elements in this class depending only on geometric invariants of the corresponding sets of ill-posed inputs. These estimates are for...
متن کاملSmoothed Analysis of Renegar's Condition Number for Linear Programming
For any linear program, we show that a slight random relative perturbation of that linear program has small condition number with high probability. Following [ST01], we call this smoothed analysis of the condition number. Part of our main result is that the expectation of the log of the condition number of any appropriately scaled linear program subject to a Gaussian perturbation of variance σ ...
متن کاملA New Approach to Solve Fully Fuzzy Linear Programming with Trapezoidal Numbers Using Conversion Functions
Recently, fuzzy linear programming problems have been considered by many. In the literature of fuzzy linear programming several models are offered and therefore some various methods have been suggested to solve these problems. One of the most important of these problems that recently has been considered; are Fully Fuzzy Linear Programming (FFLP), which all coefficients and variables of the prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 126 شماره
صفحات -
تاریخ انتشار 2011